Closed-form Solution for IMU based LSD-SLAM Point Cloud Conversion into the Scaled 3D World Environment
نویسندگان
چکیده
SLAM is a very popular research stream in computer vision and robotics nowadays. For more effective SLAM implementation it is necessary to have reliable information about the environment, also the data should be aligned and scaled according to the real world coordinate system. Monocular SLAM research is an attractive sub-stream, because of the low equipment cost, size and weight. In this paper we present a way to build a conversion from LSD-SLAM coordinate space to the real world coordinates using a true metric scale with IMU sensor data implementation. The causes of differences between the real and calculated spaces are explained and the possibility of conversions between the spaces is proved. Additionally, a closed-form solution for inter space transformation calculation is presented. The synthetic method of generating high level accurate and well controlled input data for the LSD-SLAM algorithm is presented. Finally, the reconstructed 3D environment representation is delivered as an output of the implemented conversion.
منابع مشابه
Methodology to analyze the accuracy of 3D objects reconstructed with collaborative robot based monocular LSD-SLAM
SLAM systems are mainly applied for robot navigation while research on feasibility for motion planning with SLAM for tasks like bin-picking, is scarce. Accurate 3D reconstruction of objects and environments is important for planning motion and computing optimal gripper pose to grasp objects. In this work, we propose the methods to analyze the accuracy of a 3D environment reconstructed using a L...
متن کاملMonocular LSD-SLAM Integration within AR System
In this paper, we cover the process of integrating Large-Scale Direct Simultaneous Localization and Mapping (LSD-SLAM) [1] algorithm into our existing AR stereo engine, developed for our modified ”Augmented Reality Oculus Rift”. With that, we are able to track one of our realworld cameras which are mounted on the rift, within a complete unknown environment. This makes it possible to achieve a c...
متن کاملSLAM-Aided Stem Mapping for Forest Inventory with Small-Footprint Mobile LiDAR
Accurately retrieving tree stem location distributions is a basic requirement for biomass estimation of forest inventory. Combining Inertial Measurement Units (IMU) with Global Navigation Satellite Systems (GNSS) is a commonly used positioning strategy in most Mobile Laser Scanning (MLS) systems for accurate forest mapping. Coupled with a tactical or consumer grade IMU, GNSS offers a satisfacto...
متن کاملStereo Image Point Cloud and Lidar Point Cloud Fusion for the 3d Street Mapping
Combining active and passive imaging sensors enables creating a more detailed 3D model of the real world. Then, these 3D data can be used for various applications, such as city mapping, indoor navigation, autonomous vehicles, etc. Typically, LiDAR and camera as imaging sensors are installed on these systems. Both of these sensors have advantages and drawbacks. Thus, LiDAR sensor directly provid...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.05982 شماره
صفحات -
تاریخ انتشار 2017